
  

E/I balance – oscillatory
variable population activity

● From individual neurons to a population
● From individual spikes to a population spike 

rate
● Step 1: self-excitatory/-inhibitory population. 

Bistablity.
● Step 2: self-excitatory population with linear 

adaptation.
● Step 3: self-excitatory population with non-

linear adaptation.
● Step 4: Wilson-Cowan model.



  

From individual neurons to a population

We record an individual neuron...
BUT

it is embedded into network.



  

From individual neurons to a population

Let mark every spike by just
vertical bar.



  

From individual neurons to a population

Raster plot indicates 
an activity of the population. 

Assumptions:

We assume that all neurons are similar. So we don't care about individual neurons 
anymore.

We assume that connection into the population are similar. So we don't care about 
any possible subpopulations of neurons inside the population.

We assume that all neurons within the population have around same both excitatory 
and inhibitory inputs.



  

From individual spikes to
a population spike rate

n(t+Δt)n(t)

Δt x(t)= lim
Δt→0

n(t+Δt)−n(t)
Δt

Spike rate = 



  

What can we see in
Population Spike Rate?

Population SR has periodical solution,
when population fires in synchrony.

Population SR is constant,
when population is in asynchronous
regime.



  

From individual neurons to a population
Input         Voltage      spike

Neuron receives multiple inputs, processes them 
by changing membrane potential (i.e. voltage) and
releases a spikes. 

Population receives spike rate inputs from different
sources, processes them by changing probability to
fire and forms output spike rate. 

Input SR   Probability to Fire   Output SR



  

Let every neuron within population has subthreshold symmetrical noise (i.e. neuron doesn't fire 
spontaneously). This noise forms normal distribution of voltages within the population (black). 
Increase of input excitatory firing rate shift this curve toward the threshold (color curves).

This forms an output population firing rate as a commutative error function (erf).
We usually simplify it to sigmoid function:
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From individual neurons to a population



  

Step 1: self-excitatory or self-inhibitory 
population. Bistablity.

Because without external input population decay to resting potential with time constant τ,
an output firing rate can be defined as ordinary differential equation.
Consider self-excitatory population.

                                                where, S(x(t)) is the sigmoid function from input spike rate x(t), 
                                                w is feedback synaptic weight, Θ is threshold and p is output SR.
                                                
                                                 Let consider phase plane p vs p'

d p
dt

=S (x (t)+w p−θ)−
p
τ

p'

p

S(x+wp)

-p/τ

S(x+wp)-p/τ

wp

x(t) p



  

Step 1: self-excitatory or self-inhibitory 
population. Bistablity.

Because without external input population decay to resting potential with time constant τ,
an output firing rate can be defined as ordinary differential equation.
Consider self-excitatory population.

                                                where, S(x(t)) is the sigmoid function from input spike rate x(t), 
                                                w is feedback synaptic weight, Θ is threshold and p is output SR.
                                                
                                                 Let consider phase plane p vs p' and let x is a constant and Θ=0.

d p
dt

=S (x (t )+w p−θ)−
p
τ

p'

p

S(x+wp)

-p/τ

S(x+wp)-p/τ
x

τ

w
wp

x(t) pτ



  

Step 1: self-excitatory or self-inhibitory 
population. Bistablity.

Because without external input population decay to resting potential with time constant τ,
an output firing rate can be defined as ordinary differential equation.
Consider self-excitatory population.

                                                where, S(x(t)) is the sigmoid function from input spike rate x(t), 
                                                w is feedback synaptic weight, Θ is threshold and p is output SR.
                                                
                                                 Let consider phase plane p vs p' and let x is a constant.

d p
dt

=S (x (t )+w p)−
p
τ

Stable

Stable

Unstable

p'

p



  

Step 1: self-excitatory or self-inhibitory 
population. Bistablity.

Because without external input population decay to resting potential with time constant τ,
an output firing rate can be defined as ordinary differential equation.
Consider self-excitatory population.

                                                where, S(x(t)) is the sigmoid function from input spike rate x(t), 
                                                w is feedback synaptic weight, Θ is threshold and p is output SR.
                                                
                                                 Let consider phase plane p vs p' and let x is a constant.

d p
dt

=S (x (t )+w p)−
p
τ

Way UP



  

Step 1: self-excitatory or self-inhibitory 
population. Bistablity.

Because without external input population decay to resting potential with time constant τ,
an output firing rate can be defined as ordinary differential equation.
Consider self-excitatory population.

                                                where, S(x(t)) is the sigmoid function from input spike rate x(t), 
                                                w is feedback synaptic weight, Θ is threshold and p is output SR.
                                                
                                                 Let consider phase plane p vs p' and let x is a constant.

d p
dt

=S (x (t )+w p)−
p
τ

Way Down



  

Step 1: self-excitatory or self-inhibitory 
population. Bistablity.

Because without external input population decay to resting potential with time constant τ,
an output firing rate can be defined as ordinary differential equation.
Consider self-excitatory population.

                                                where, S(x(t)) is the sigmoid function from input spike rate x(t), 
                                                w is feedback synaptic weight, Θ is threshold and p is output SR.
                                                
                                                 Let consider phase plane p vs p' and let x is a constant.

d p
dt

=S (x (t )+w p)−
p
τ

Noise in bistable regime



  

Step 2: self-excitatory population with 
linear adaptation

d p
dt

=S (x (t )+w p)−a−
p
τ

d a
dt

=
ε p−a

τa

where, a is adaptation variable, ε is adaptation gain
and τ

a
 is adaptation time constant. Usually τ

a
 >> τ.

If ε is equal to the zero, we will have the same one equation
as we had before, because a(t)=const=0
So ε actually rotates the ox-ordinate.
We have to consider p a phase plane.

p

a  ε =0

 ε =0.2

 ε =1 ε =5

Stable

Stable

Unstable



  

Step 2: self-excitatory population with 
linear adaptation

d p
dt

=S (x (t )+w p)−a−
p
τ

d a
dt

=
ε p−a

τa

where, a is adaptation variable, ε is adaptation gain
and τ

a
 is adaptation time constant. Usually τ

a
 >> τ.

If ε is equal to the zero, we will have the same one equation
as we had before, because a(t)=const=0
So ε actually rotates the ox-ordinate.
We have to consider p a phase plane.

p

a

 ε =5
Stable

Stable

Unstable
x=-5

x=3

x=-1



  

Step 2: self-excitatory population with 
linear adaptation

d p
dt

=S (x (t )+w p)−a−
p
τ

d a
dt

=
ε p−a

τa

where, a is adaptation variable, ε is adaptation gain
and τ

a
 is adaptation time constant. Usually τ

a
 >> τ.

If ε is equal to the zero, we will have the same one equation
as we had before, because a(t)=const=0
So ε actually rotates the ox-ordinate.
We have to consider p a phase plane.

Slow adaptation τ
a
 =100 τ=1.



  

Step 2: self-excitatory population with 
linear adaptation

d p
dt

=S (x (t )+w p)−a−
p
τ

d a
dt

=
ε p−a

τa

where, a is adaptation variable, ε is adaptation gain
and τ

a
 is adaptation time constant. Usually τ

a
 >> τ.

If ε is equal to the zero, we will have the same one equation
as we had before, because a(t)=const=0
So ε actually rotates the ox-ordinate.
We have to consider p a phase plane.

Fast adaptation τ
a
 =10 τ=1



  

Step 2: self-excitatory population with 
linear adaptation

d p
dt

=S (x (t )+w p)−a−
p
τ

d a
dt

=
ε p−a

τa

p

a
w=0

w=10

w=5

                                                                                         adaptation
When do these oscillations appear? When excitation and inhibition are in perfect balances



  

Step 2: self-excitatory population with 
linear adaptation

d p
dt

=S (x (t )+w p)−a−
p
τ

d a
dt

=
ε p−a

τa

where, a is adaptation variable, ε is adaptation gain
and τ

a
 is adaptation time constant. Usually τ

a
 >> τ.

If ε is equal to the zero, we will have the same one equation
as we had before, because a(t)=const=0
So ε actually rotates the ox-ordinate.
We have to consider p a phase plane.

Subthreshold oscillations



  

Step 3: self-excitatory population with 
non-linear adaptation. Case II

d p
dt

=S (x (t )+w p)−a−
p
τ

d a
dt

=
S (ε p−ξ)−a

τa

What if adaptation non-linear, say same sigmoid function?
Case II
If adaptation is steep enough and doesn't shifted so far.....
ε=20,ξ=1

x=-3
x=-2

x=-1.5
x=-1

x=0

Stable

Unstable

p

a



  

Step 3: self-excitatory population with 
non-linear adaptation. Case II

d p
dt

=S (x (t )+w p)−a−
p
τ

d a
dt

=
S (ε p−ξ)−a

τa

What if adaptation non-linear, say same sigmoid function?
Case II
If adaptation is steep enough and doesn't shifted so far.....
ε=20,ξ=1



  

Step 3: self-excitatory population with 
non-linear adaptation. Case I

d p
dt

=S (x (t )+w p)−a−
p
τ

d a
dt

=
S (ε p−ξ)−a

τa

What if adaptation non-linear, say same sigmoid function?
Case I
If adaptation is very steep and  shifted far away.....
ε=25,ξ=11

x=-2.0

Stable

Unstable

p

a

Stablex=-2.5
x=-3.0

x=-3.5
x=-4.0



  

Step 3: self-excitatory population with 
non-linear adaptation. Case I

d p
dt

=S (x (t )+w p)−a−
p
τ

d a
dt

=
S (ε p−ξ)−a

τa

What if adaptation non-linear, say same sigmoid function?
Case I
If adaptation is very steep and  shifted faraway.....
ε=25,ξ=11



  

Step 4: Wilson-Cowan model
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With perfect E/I balance, it's unstable!
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Step 4: Wilson-Cowan model
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E/I balance – oscillatory
variable population activity

● From individual neurons to a population
● From individual spikes to a population spike 

rate
● Step 1: self-excitatory/-inhibitory population. 

Bistablity.
● Step 2: self-excitatory population with linear 

adaptation.
● Step 3: self-excitatory population with non-

linear adaptation.
● Step 4: Wilson-Cowan model.
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